19,110 research outputs found

    Non-equilibrium dynamics of Andreev states in the Kondo regime

    Full text link
    The transport properties of a quantum dot coupled to superconducting leads are analyzed. It is shown that the quasiparticle current in the Kondo regime is determined by the non-equilibrium dynamics of subgap states (Andreev states) under an applied voltage. The current at low bias is suppressed exponentially for decreasing Kondo temperature in agreement with recent experiments. We also predict novel interference effects due to multiple Landau-Zener transitions between Andreev states.Comment: Revtex4, 4 pages, 4 figure

    Non-unimodular transversely homogeneous foliations

    Get PDF
    We give sufficient conditions for the tautness of a transversely homogenous foliation defined on a compact manifold, by computing its base-like cohomology. As an application, we prove that if the foliation is non-unimodular then either the ambient manifold, the closure of the leaves or the total space of an associated principal bundle fiber over S1S^1.Comment: 33 pages. This paper will appear in Annales de l'Institut Fourier, Grenobl

    Green's function approach to Chern-Simons extended electrodynamics: an effective theory describing topological insulators

    Get PDF
    Boundary effects produced by a Chern-Simons (CS) extension to electrodynamics are analyzed exploiting the Green's function (GF) method. We consider the electromagnetic field coupled to a θ\theta-term in a way that has been proposed to provide the correct low energy effective action for topological insulators (TI). We take the θ\theta-term to be piecewise constant in different regions of space separated by a common interface Σ\Sigma, to be called the θ\theta-boundary. Features arising due to the presence of the boundary, such as magnetoelectric effects, are already known in CS extended electrodynamics and solutions for some experimental setups have been found with specific configuration of sources. In this work we illustrate a method to construct the GF that allows to solve the CS modified field equations for a given θ\theta-boundary with otherwise arbitrary configuration of sources. The method is illustrated by solving the case of a planar θ\theta-boundary but can also be applied for cylindrical and spherical geometries for which the θ\theta-boundary can be characterized by a surface where a given coordinate remains constant. The static fields of a point-like charge interacting with a planar TI, as described by a planar discontinuity in θ\theta, are calculated and successfully compared with previously reported results. We also compute the force between the charge and the θ\theta-boundary by two different methods, using the energy momentum tensor approach and the interaction energy calculated via the GF. The infinitely straight current-carrying wire is also analyzed

    Microscopic theory of the proximity effect in superconductor-graphene nanostructures

    Full text link
    We present a theoretical analysis of the proximity effect at a graphene-superconductor interface. We use a tight-binding model for the electronic states in this system which allows to describe the interface at the microscopic level. Two different interface models are proposed: one in which the superconductor induces a finite pairing in the graphene regions underneath, thus maintaining the honeycomb structure at the interface and one that assumes that the graphene layer is directly coupled to a bulk superconducting electrode. We show that properties like the Andreev reflection probability and its channel decomposition depend critically on the model used to describe the interface. We also study the proximity effect on the local density of states on the graphene. For finite layers we analyze the induced minigap and how it is reduced when the length of the layer increases. Results for the local density of states profiles for finite and semi-infinite layers are presented.Comment: 9 pages, 7 figures, submitted to Phys. Rev.

    Hokupa'a-Gemini Discovery of Two Ultracool Companions to the Young Star HD 130948

    Get PDF
    We report the discovery of two faint ultracool companions to the nearby (d~17.9 pc) young G2V star HD 130948 (HR 5534, HIP 72567) using the Hokupa'a adaptive optics instrument mounted on the Gemini North 8-meter telescope. Both objects have the same common proper motion as the primary star as seen over a 7 month baseline and have near-IR photometric colors that are consistent with an early-L classification. Near-IR spectra taken with the NIRSPEC AO instrument on the Keck II telescope reveal K I lines, FeH, and water bandheads. Based on these spectra, we determine that both objects have spectral type dL2 with an uncertainty of 2 spectral subclasses. The position of the new companions on the H-R diagram in comparison with theoretical models is consistent with the young age of the primary star (<0.8 Gyr) estimated on the basis of X-ray activity, lithium abundance and fast rotation. HD 130948 B and C likely constitute a pair of young contracting brown dwarfs with an orbital period of about 10 years, and will yield dynamical masses for L dwarfs in the near future.Comment: 10 pages, 3 figures, (13 total pages
    • …
    corecore